

Vectors and Transforms

In 3D Graphics

Course Structure

• 14 lectures

- Book is the verbal format / more meticulous explanations
- Lecture slides are only short summary
 - Perhaps not enough to fully understand
- Exam (salstentamen):
 - I will only assume that you have studied the topics covered by the slides.
 - Reading instructions are pointers to more verbal descriptions in the book
 - May come a few "harder" questions, intended to force you to think beyond what's in the slides (and that could of course accidentally be covered by the book).

• Tutorials – the practical experience

- 1-6 "holds your hand". Very fast. Intentionally lots of copy/paste.
 Do them in 2-3 weeks. No need to wait for their deadlines.
- Project Here, you apply the knowledge from tutorial 1-6, so you must have understood them.
 - You will need the 3-4 weeks for the project.

The Bonus Material

- Bonus material on home page
 - http://www.cse.chalmers.se/edu/course/TDA362/sched ule.html
 - Purpose: only to be of help in case lectures and course book is not enough for you to understand. Sometimes, it helps having same topics explained in a second way.
 - Skip the bonus material if you are not very interested.
 - No exam questions on bonus material!

Quick Repetition of Vector Algebra

vectors \underline{V}_A and \underline{V}_B .

 $z = r \cos \phi$

 $\int_{a}^{b} \underline{r}(t)dt = \left[\underline{R}(t)\right]_{a}^{b} = \underline{R}(b) - \underline{R}(a)$

Excellent interactive online linear algebra repetition:

http://immersivemath.com/ila/index.html

Structure

Matrices

- Matrix mult.
- Transformation Pipeline
- Practical usage
- Rotations
- Translations
- Homogeneous coordinates
- Shear / scale / normal matrix
- Euler matrices
- Quaternions
- Projections
- Bresenham's line drawing algorithm

Why transforms?

- We want to be able to animate objects and the camera
 - Translations
 - Rotations
 - Shears
 - ...
- We want to be able to use projection transforms

How implement transforms?

- Matrices!
- Can you really do everything with a matrix?
- Not everything, but a lot!
- We use 3x3 and 4x4 matrices

$$\mathbf{p} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix}$$

$$\begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} m_{00}p_x + m_{01}p_y + m_{02}p_z \\ m_{10}p_x + m_{11}p_y + m_{12}p_z \\ m_{20}p_x + m_{21}p_y + m_{22}p_z \end{pmatrix}$$

$$\begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} m_{00}p_x + m_{01}p_y + m_{02}p_z \\ m_{10}p_x + m_{11}p_y + m_{12}p_z \\ m_{20}p_x + m_{21}p_y + m_{22}p_z \end{pmatrix}$$

$$\begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} m_{00}p_x + m_{01}p_y + m_{02}p_z \\ m_{10}p_x + m_{11}p_y + m_{12}p_z \\ m_{20}p_x + m_{21}p_y + m_{22}p_z \end{pmatrix}$$

$$\begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} m_{00}p_x + m_{01}p_y + m_{02}p_z \\ m_{10}p_x + m_{11}p_y + m_{12}p_z \\ m_{20}p_x + m_{21}p_y + m_{22}p_z \end{pmatrix}$$

$$\begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} m_{00}p_x + m_{01}p_y + m_{02}p_z \\ m_{10}p_x + m_{11}p_y + m_{12}p_z \\ m_{20}p_x + m_{21}p_y + m_{22}p_z \end{pmatrix}$$

$$\begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} m_{00}p_x + m_{01}p_y + m_{02}p_z \\ m_{10}p_x + m_{11}p_y + m_{12}p_z \\ m_{20}p_x + m_{21}p_y + m_{22}p_z \end{pmatrix}$$

$$\begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} m_{00}p_x + m_{01}p_y + m_{02}p_z \\ m_{10}p_x + m_{11}p_y + m_{12}p_z \\ m_{20}p_x + m_{21}p_y + m_{22}p_z \end{pmatrix}$$

$$\begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} m_{00}p_x + m_{01}p_y + m_{02}p_z \\ m_{10}p_x + m_{11}p_y + m_{12}p_z \\ m_{20}p_x + m_{21}p_y + m_{22}p_z \end{pmatrix}$$

$$\begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} m_{00}p_x + m_{01}p_y + m_{02}p_z \\ m_{10}p_x + m_{11}p_y + m_{12}p_z \\ m_{20}p_x + m_{21}p_y + m_{22}p_z \end{pmatrix}$$

ModelViewMtx = "Model to View Matrix"

ModelViewMtx * v = $(M_{V \leftarrow W} * M_{W \leftarrow M}) * v$

View space

Model space

Iviodel to World Watrix
Matrix
camera

World space

ModelViewMtx = "Model to View Matrix"

ModelViewMtx * $v = (M_{V \leftarrow W} * M_{W \leftarrow M}) * v$

Projection Matrix

Full projection:

V_{clip_space} = projectionMatrix * ModelViewMatrix * v_{model_space}

Or simply: v_{clip_space} = M_{MVP} * v

Transformation Pipeline

OpenGL | Geometry stage | done on GPU

The OpenGL Pipeline

From http://deltronslair.com/glpipe.html

How do I use transforms practically?

 Say you have a circle with origin at (0,0,0) and with radius 1, i.e., a unit circle

```
    mat4 m = translate({8,0,0}); // create translation matrix
    RenderCircle(m); // Draw circle using m as // model-to-world matrix
    mat4 s = scale({2,2,2}); // create scaling matrix
    mat4 t = translate({3,2,0}); // create translation matrix
    RenderCircle(t*s); // use matrix (t*s)
```

What happens? See next slide...

Cont'd from previous slide A simple 2D example

A circle in model space

```
mat4 s = scale({2,2,2});
mat4 t = translate({3,2,0});
RenderCircle(t*s); // Effect= first scaling, then translation
                       mat4 m = translate({8,0,0});
                       RenderCircle(m);
```

Cont'd from previous slide A simple 2D example

A circle in model space

Example of a simple GfxObject class

```
class GfxObject {
public:
   load("filename"); // Creates m shaderProgram + m vertexArrayObject
   render(mat4 projectionMatrix, mat4 viewMatrix)
         mat4 modelViewProjectionMatrix = projectionMatrix * viewMatrix *
                                            m modelMatrix;
         int loc = glGetUniformLocation(shaderProgram, "modelViewProjectionMatrix");
         glUniformMatrix4fv(loc, 1, false, &modelViewProjectionMatrix[0].x);
         glEnableVertexAttribArray(0);
         glEnableVertexAttribArray(1);
         glUseProgram(m shaderProgram);
         glBindVertexArray(m vertexArrayObject);
         glDrawArrays(GL TRIANGLES, 0,
                                            #version 420 VERTEX SHADER
   };
                                            layout(location = 0) in vec3 position;
private:
                                            layout(location = 1) in vec3 color;
   mat4
          m modelMatrix;
                                            out vec4 outColor;
   uint
         numVertices;
                                            uniform mat4 modelViewProjectionMatrix;
   Gluint m shaderProgram;
   GLuint m vertexArrayObject;
                                            void main()
};
                                              gl Position = modelViewProjectionMatrix *
                                                           vec4(position, 1.0);
                                              outColor = vec4(color, 1.0);
```

Rotation (2D)

Consider rotation about the origin by θ degrees -radius stays the same, angle increases by θ

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x = r \cos \phi$$
$$y = r \sin \phi$$

Derivation of rotation matrix in 2D

$$\mathbf{n} = \mathbf{R}_z \mathbf{p}$$
?

$$\mathbf{p} = re^{i\varphi} = r(\cos\varphi + i\sin\varphi)$$
 [rotation is mult by $e^{i\alpha}$]

$$\mathbf{n} = e^{i\alpha}\mathbf{p} = re^{i\alpha}e^{i\varphi} =$$

$$= r[(\cos \alpha + i \sin \alpha)(\cos \varphi + i \sin \varphi)] =$$

$$= r(\cos\alpha\cos\varphi - \sin\alpha\sin\varphi) +$$

$$ir(\cos\alpha\sin\varphi+\sin\alpha\cos\varphi)$$

In vector form:

$$\mathbf{p} = (p_x, p_y)^T = (r \cos \varphi, r \sin \varphi)^T$$

$$\mathbf{n} = (n_x, n_y)^T = (r(\cos\alpha\cos\varphi - \sin\alpha\sin\varphi),$$

$$r(\cos\alpha\sin\varphi + \sin\alpha\cos\varphi))^{T}$$

Derivation 2D rotation, cont'd

In vector form:

$$\mathbf{p} = (p_x, p_y)^T = (r \cos \phi, r \sin \phi)^T$$

$$\mathbf{n} = (n_x, n_y)^T = (r \cos \alpha \cos \phi + \sin \alpha \sin \phi),$$

$$r(\sin \alpha \cos \phi + \cos \alpha \sin \phi))^T$$

$$\mathbf{n} = \mathbf{R}_z \mathbf{p} \quad \text{what is } \mathbf{R}_z?$$

$$\binom{n_x}{n_y} = \frac{(\cos \alpha) - \sin \alpha}{\sin \alpha} \frac{p_x}{p_y}$$

$$\mathbf{R}_z$$

Rotations in 3D

 Same as in 2D for Z-rotations, but with a 3x3 matrix

$$\mathbf{R}_{z}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \Rightarrow \mathbf{R}_{z}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}_{z}$$

For X
$$\mathbf{R}_{x}(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

$$\mathbf{R}_{y}(\alpha) = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix}$$

Translations must be simple?

Translation Rotation
$$\begin{pmatrix}
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{pmatrix} \mathbf{p} = \mathbf{p} + \mathbf{t} \qquad \mathbf{n} = \mathbf{R}\mathbf{p}$$

- Rotation is matrix mult, translation is add
- Would be nice if we could only use matrix multiplications...
- Turn to homogeneous coordinates
- Add a new component to each vector

Homogeneous notation

- A point: $\mathbf{p} = (p_x \quad p_y \quad p_z \quad 1)^T$
- Translation becomes:

$$\begin{pmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
p_x \\
p_y \\
p_z \\
1
\end{pmatrix} = \begin{pmatrix}
p_x + t_x \\
p_y + t_y \\
p_z + t_z \\
1
\end{pmatrix}$$

- A vector (direction): $\mathbf{d} = \begin{pmatrix} d_x & d_y & d_z & 0 \end{pmatrix}^T$
- Translation of vector: Td = d
- Also allows for projections (later)

Rotations in 4x4 form

Just add a row at the bottom, and a

column at the right:

$\mathbf{R}_{z}(\alpha) =$	$\cos \alpha$	$-\sin \alpha$	0	0)
	$\sin \alpha$	$\cos \alpha$	0	0
	0	0	1	0
	\bigcup 0	0	0	1

Triple Scalar Product

The magnitude of the triple scalar product is equal to the volume of the parallelepiped formed by the three vectors $\underline{V}_A, \underline{V}_B, \underline{V}_C \colon \underline{V}_A \bullet (\underline{V}_B \times \underline{V}_C)$.

- Similarly for X and Y
- Determinant = volume change when the transform is applied to a unit cube
 - det(R) = 1 for all rot. matrices (=tripple scal. prod for 3x3 mtx)
- Trace(R) = 1+2cos(alpha) (for 3x3 rot-matrices)

Change of Frames

• How to get the M_{model-to-world} matrix:

$$\mathbf{P} = (0,5,0,1) \bullet$$

$$\mathbf{M}_{\text{model-to-world}} = \begin{bmatrix} a_x & b_x & c_x & o_x \\ a_y & b_y & c_y & o_y \\ a_z & b_z & c_z & o_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \\ 0 \\ 1 \end{bmatrix} \mathbf{c}$$

$$\mathbf{model-to-world} = \begin{bmatrix} a_x & b_x & c_x & o_x \\ a_y & b_y & c_y & o_y \\ a_z & b_z & c_z & o_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{model-to-world} = \begin{bmatrix} a_x & b_x & c_x & o_x \\ a_y & b_y & c_y & o_y \\ a_z & b_z & c_z & o_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{The basis vectors a b c}$$

The basis vectors **a**,**b**,**c** are expressed in the world coordinate system

(Both coordinate systems are right-handed)

E.g.:
$$\mathbf{p}_{\text{world}} = \mathbf{M}_{\text{m}\to\text{w}} \mathbf{p}_{\text{model}} = \mathbf{M}_{\text{m}\to\text{w}} (0,5,0,1)^{\text{T}} = 5 \mathbf{b} + \mathbf{o}$$

More basic transforms

Scaling

Shear

Rigid-body: rotation and/or (then) translation

$$X = TR$$

- Concatenation of matrices
 - Not commutative, i.e., RT ≠ TR
 - In X = TR, the rotation is done first
- Inverses and rotation about arbitrary axis:
 - Rigid body: X⁻¹ = X^T (for 3x3 matrices) Akenine-Möller © 2002

Normal transforms Not so normal...

Cannot use same matrix to transform normals

Use:
$$\mathbf{N} = (\mathbf{M}^{-1})^T$$
 instead of \mathbf{M}

M works for rotations and translations, though

The Euler Transform

 Assume the camera or object looks down the negative zaxis, with up in the y-direction, x to the right

- *h*=head
- p=pitch
- *r*=roll
- Optional
 - You may read about Gimbal lock in book, p: 67
 - See also
 - http://mathworld.wolfram.com/EulerAngles.html

Using Euler transforms

Head:

- Rotate around y-axis
- Recompute x- and z-axes
 - By rotating them as vectors

Pitch:

- Rotate around x'-axis
- Recompute y- and z'-axes

Roll:

Rotate around z"-axis
 How do we rotate vectors (axes)
 and points around an arbitrary axis?

Quaternions

$$\hat{\mathbf{q}} = (\mathbf{q}_{v}, q_{w}) = (q_{x}, q_{y}, q_{z}, q_{w})$$
$$= iq_{x} + jq_{y} + kq_{z} + q_{w}$$

- Extension of imaginary numbers
- Compact+fast representation of rotations
- Focus on unit quaternions:
 - Norm (or length): $n(\hat{\mathbf{q}}) = \sqrt{q_x^2 + q_y^2 + q_z^2 + q_w^2} = 1$
- A unit quaternion can be written as:

$$\hat{\mathbf{q}} = (\sin \phi \mathbf{u}_q, \cos \phi)$$
 where $||\mathbf{u}_q|| = 1$

Unit quaternions are perfect for rotations! $\hat{\mathbf{q}} = (\sin \phi \mathbf{u}_q, \cos \phi)$

- Compact (4 components)
- Can show that $\hat{\mathbf{q}}\hat{\mathbf{p}}\hat{\mathbf{q}}^{-1}$
- ...represents a rotation of
 2φ radians around uq of p

- That is: a unit quaternion represents a rotation as a rotation axis and an angle
- o rotate(ux,uy,uz,angle);
 - See p:76 how to convert q to matrix.
- Interpolation from one quaternion to another is much simpler, and gives optimal results

Projections

Orthogonal (parallel) and Perspective

Orthogonal projection

- Simple, just skip one coordinate
 - Say, we're looking along the z-axis
 - Then drop z, and render

$$\mathbf{M}_{ortho} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \Rightarrow \quad \mathbf{M}_{ortho} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} p_x \\ p_y \\ 0 \\ 1 \end{pmatrix}$$

Orthogonal projection

- Not invertible! (determinant is zero)
 - i.e., depth information is lost
- For Z-buffering
 - It is not sufficient to project to a plane
 - Rather, we need to "project" to a box

Unit cube: [-1,-1,-1] to [1,1,1]

eye

Unit cube is also used for perspective proj.

Simplifies clipping

Orthogonal projection

- The "unitcube projection" is invertible
- Simple to derive
 - Just a translation and scale

What about those homogenenous coordinates?

$$\mathbf{p} = \begin{pmatrix} p_x & p_y & p_z & p_w \end{pmatrix}^T$$

- p_w=0 for vectors, and p_w=1 for points
- What if pw is not 1 or 0?
- Solution is to divide all components by pw

$$\mathbf{p} = (p_x / p_w \quad p_y / p_w \quad p_z / p_w \quad 1)^T$$

Gives a point again!

 Can be used for projections, as we will see

Perspective projection

$$\frac{q_x}{p_x} = \frac{-d}{p_z} \implies q_x = -d\frac{p_x}{p_z}$$

For y:
$$q_y = -d \frac{p_y}{p_z}$$

$$\mathbf{P}_p = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{pmatrix}$$

Perspective projection

$$\mathbf{P}_{p} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{pmatrix} \qquad \mathbf{P}_{p}\mathbf{p} = \mathbf{q}$$

$$\mathbf{P}_{p}\mathbf{p}=\mathbf{q}$$

$$q_x = -d\frac{p_x}{p_z} \quad q_y = -d\frac{p_y}{p_z} \quad q_z = -d$$

$$\mathbf{P}_{p}\mathbf{p} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{pmatrix} \begin{pmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} p_{x} \\ p_{y} \\ p_{z} \\ -p_{z}/d \end{pmatrix} \Rightarrow \mathbf{q} = \begin{pmatrix} -dp_{x}/p_{z} \\ -dp_{y}/p_{z} \\ -dp_{z}/p_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} -dp_{x}/p_{z} \\ -dp_{y}/p_{z} \\ 1 \end{pmatrix}$$

The "arrow" is the homogenization process

Perspective projection

- Again, the determinant is 0 (not invertible)
- To make the rest of the pipeline the same as for orhogonal projection:
 - project into unit-cube

- Not much different from P_p
- Do not collapse z-coord to a plane

Understanding the projection matrix

$$\mathbf{P}_{p}\mathbf{p} = \begin{pmatrix} s_{x} & 0 & a & 0 \\ 0 & s_{y} & b & 0 \\ 0 & 0 & s_{z} & c \\ 0 & 0 & -1/d & 0 \end{pmatrix} \begin{pmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} s_{x}p_{x} + ap_{z} \\ s_{y}p_{y} + bp_{z} \\ s_{z}p_{z} + c \\ -p_{z}/d \end{pmatrix} \Rightarrow \mathbf{q} = \begin{pmatrix} -d(s_{x}p_{x}/p_{z} + a) \\ -d(s_{y}p_{y}/p_{z} + b) \\ -d(s_{z}p_{z} + c)/p_{z} \\ 1 \end{pmatrix}$$

- s_x, s_y, s_z –Scaling
- a, b Due to homogenization, this controls asymmetry of the frustum
- c Keep z-info
- -1/d Perspective division based on p_z

OpenGL projection matrix

$$P_{OpenGL} = \begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

mat4 projectionMtx = perspective(fov, width / height, near, far);

Quick Repetition of Vector Algebra

Length of vector:
$$\|\mathbf{x}\| = \sqrt{(x^2 + y^2 + z^2)}$$

Normalizing a vector:
$$\hat{\mathbf{x}} = \frac{\mathbf{x}}{\sqrt{(x^2 + y^2 + z^2)}} = \frac{\mathbf{x}}{\|\mathbf{x}\|}$$

Normal:
$$\mathbf{n} = (\mathbf{v}_1 - \mathbf{v}_0) \times (\mathbf{v}_2 - \mathbf{v}_0)$$
 (usualy needs to be normalized as well)

Cross Product:

- Perpendicular vector, Area
- $\sin \alpha : \sin \alpha = \frac{\mathbf{v}_a \times \mathbf{v}_b}{\|\mathbf{v}_a\| \|\mathbf{v}_b\|} \hat{\mathbf{e}}$, where $\hat{\mathbf{e}}$ is perp. to \mathbf{v}_a and \mathbf{v}_b parallelepiped formed by the three vectors $\underline{V}_a, \underline{V}_B, \underline{V}_C : \underline{V}_A \cdot (\underline{V}_B \times \underline{V}_C)$.

$$\mathbf{u} \times \mathbf{v} = \hat{\mathbf{x}} (u_y v_z - u_z v_y) + \hat{\mathbf{y}} (u_z v_x - u_x v_z) + \hat{\mathbf{z}} (u_x v_y - u_y v_x),$$

Dot product:
$$\cos \alpha = \frac{\mathbf{v}_a \cdot \mathbf{v}_b}{\|\mathbf{v}_a\| \|\mathbf{v}_b\|}$$

$$\mathbf{a} \bullet \mathbf{b} = (a_x b_x + a_y b_y + a_z b_z)$$

$$\underline{V}_{A} \times \underline{V}_{B} = \begin{cases}
\underline{i} & \underline{j} & \underline{k} \\
V_{AX} & V_{AY} & V_{AZ} \\
V_{BX} & V_{BY} & V_{BZ}
\end{cases}$$

Triple Scalar Product

The magnitude of the triple scalar product is equal to the volume of the

Ray/Plane Intersections

- Ray: $r(t) = \mathbf{0} + t\mathbf{d}$
- Plane: $\mathbf{n} \cdot \mathbf{x} + \mathbf{d} = 0$; $(\mathbf{d} = -\mathbf{n} \cdot \mathbf{p_0})$
- Set x=r(t):

$$\mathbf{n} \cdot (\mathbf{o} + \mathbf{td}) + \mathbf{d} = 0$$

$$\mathbf{n} \bullet \mathbf{o} + \mathbf{t} (\mathbf{n} \bullet \mathbf{d}) + \mathbf{d} = 0$$

$$t = (-d - \mathbf{n} \cdot \mathbf{o}) / (\mathbf{n} \cdot \mathbf{d})$$


```
Vec3f rayPlaneIntersect(vec3f o,dir, n, d)
{
    float t=(-d-n.dot(o)) / (n.dot(dir));
    return o + dir*t;
}
```

See book, p: 780

Line/Line intersection in 2D

•
$$r_1(s) = o_1 + sd_1$$

$$\bullet$$
 r₂(t) = \mathbf{o}_2 +t \mathbf{d}_2

•
$$r_1(s) = r_2(t)$$
 (1)

• $\mathbf{o}_1 + \mathbf{sd}_1 = \mathbf{o}_2 + \mathbf{td}_2(2)$

noting that
$$d \cdot d^{\perp} = 0$$
, $[d = (a,b) \rightarrow d^{\perp} = (b,-a)]$

$$sd_1 \cdot d_2^{\perp} = (o_2 - o_1) \cdot d_2^{\perp}$$

 $td_2 \cdot d_1^{\perp} = (o_1 - o_2) \cdot d_1^{\perp}$

$$s = \frac{(\mathbf{o}_2 - \mathbf{o}_1) \bullet \mathbf{d}_2^{\perp}}{(\mathbf{d}_1 \bullet \mathbf{d}_2^{\perp})}$$

$$t = \frac{(\mathbf{o}_1 - \mathbf{o}_2) \bullet \mathbf{d}_1^{\perp}}{(\mathbf{d}_2 \bullet \mathbf{d}_1^{\perp})}$$

Line/Line intersection in 3D

- $r_1(s) = o_1 + sd_1$
- $\overline{\bullet} \quad r_2(t) = o_2 + td_2$

s, t correspond to closest points

• $r_1(s) = r_2(t)$

- (1)
- $\mathbf{o}_1 + \mathbf{s} \mathbf{d}_1 = \mathbf{o}_2 + \mathbf{t} \mathbf{d}_2$
- (2)

noting that $d \times d=0$

 $\|(\mathbf{d}_1 \times \mathbf{d}_2)\|^2 = 0$ means parallel lines

 $sd_1 x d_2 = (o_2-o_1) x d_2$ (i.e., cross mult. both sides with d_2 to drop t) $td_2 x d_1 = (o_1-o_2) x d_1$ (i.e., cross mult. both sides with d_1 to drop s)

=>

$$s (d_1 x d_2) \cdot (d_1 x d_2) = ((o_2-o_1) x d_2) \cdot (d_1 x d_2)$$

 $t (d_2 x d_1) \cdot (d_2 x d_1) = ((o_1-o_2) x d_1) \cdot (d_2 x d_1)$

$$s = \frac{\det(\mathbf{o}_2 - \mathbf{o}_1, \mathbf{d}_2, \mathbf{d}_1 \times \mathbf{d}_2)}{\|(\mathbf{d}_1 \times \mathbf{d}_2)\|^2}$$

$$t = \frac{\det(\mathbf{o}_2 - \mathbf{o}_1, \mathbf{d}_1, \mathbf{d}_1 \times \mathbf{d}_2)}{\|(\mathbf{d}_1 \times \mathbf{d}_2)\|^2}$$

Area and Perimeter

For polygon $p_0, p_1...p_n$

Perimeter = omkrets = sum of length of each edge in 2D and 3D:

$$O = \sum_{i=0}^{n-1} ||p_{i+1} - p_i|| = \sum_{i=0}^{n-1} \sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2 + (z_{i+1} - z_i)^2}$$

Area in 2D:

$$A = \frac{1}{2} \left| \sum_{i=1}^{n-1} \left\langle x_i y_{i+1} - x_{i+1} y_i \right\rangle \right|$$

We can understand the formula from using Greens theorem: integrating over

border to get area

Choose arbitrary point to integrate from, e.g. Origin (0,0,0)

$$A_{triangle} = \frac{1}{2} (v_1 \times v_2)$$

Works for non-convex polygons as well

Volume in 3D

The same trick for computing area in 2D can be used to easily compute the volume in 3D for triangulated objects

Again, choose arbitrary point-of-integration, e.g. Origin (0,0,0)

With respect to point-of-integration

- For all backfacing triangles, add volume
- For all frontfacing triangles, subtract volume

Works for non-convex objects as well

$$V_{tetrahedron} = \frac{1}{3!} |\mathbf{a} \bullet (\mathbf{b} \times \mathbf{c})| = \frac{1}{3!} |\det(\mathbf{a}, \mathbf{b}, \mathbf{c})|$$

$$\begin{vmatrix} \mathbf{a} = \mathbf{p}_1 - \text{ origin} \\ \mathbf{b} = \mathbf{p}_2 - \text{ origin} \\ \mathbf{c} = \mathbf{p}_3 - \text{ origin} \end{vmatrix}$$

where

$$a = p_1 - \text{origin}$$

 $b = p_2 - \text{origin}$

$$c = p_3 - origin$$

$$V_{object} = \frac{1}{3!} \sum_{i=1}^{n} \mathbf{a} \bullet (\mathbf{b} \times \mathbf{c})$$

The sign of the determinant will automatically handle positive and negative contribution

Scan Conversion of Line Segments

 Start with line segment in window coordinates with integer values for endpoints

y = kx + m

Assume implementation has a

write_pixel function

$$k = \frac{\Delta y}{\Delta x}$$

DDA Algorithm

 (x_2, y_2) Δy (x_1, y_1) Δx

- <u>Digital Differential Analyzer</u>
 - DDA was a mechanical device for numerical solution of differential equations
 - -Line y=kx+ m satisfies differential equation $dy/dx = k = \Delta y/\Delta x = y_2-y_1/x_2-x_1$
- Along scan line $\Delta x = 1$

```
y=y1;
For(x=x1; x<=x2,ix++) {
    write_pixel(x, round(y), line_color)
    y+=k;
}</pre>
```

Problem

- DDA = for each x plot pixel at closest y
 - –Problems for steep lines

Using Symmetry

- Use for $1 \ge k \ge 0$
- For k > 1, swap role of x and y
 - –For each y, plot closest x

- The problem with DDA is that it uses floats which was slow in the old days
- Bresenhams algorithm only uses integers

Bresenham's line drawing algorithm

- The line is drawn between two points (x_0, y_0)
- and (x_1, y_1) Slope $k = \frac{(y_1 y_0)}{(x_1 x_0)}$ (y = kx + m)
 - Each time we step 1 in x-direction, we should increment y with k. Otherwise the error in y increases with *k*.
 - If the error surpasses 0.5, the line has become closer to the next yvalue, so we add 1 to y, simultaneously decreasing the error by 1

```
function line(x0, x1, y0, y1)
   int deltax := abs(x1 - x0)
   int deltay := abs(y1 - y0)
   real error := 0
   real deltaerr := deltay / deltax
   int y := y0
   for x from x0 to x1
      plot(x,y)
      error := error + deltaerr
      if error \geq 0.5
          y := y + 1
          error := error - 1.0
```

See also

http://en.wikipedia.org/wiki/Bresenham's line algorithm

Bresenham's line drawing algorithm

- Now, convert algorithm to only using integer computations
- Trick: multiply the fractional number, deltaerr, by deltax
 - enables us to express deltaerr as an integer.
 - The comparison if error>=0.5 is multiplied on both sides by 2*deltax

Old float version:

```
function line(x0, x1, y0, y1)

int deltax := abs(x1 - x0)

int deltay := abs(y1 - y0)

real error := 0

real deltaerr := deltay / deltax

int y := y0

for x from x0 to x1

plot(x,y)

error := error + deltaerr

if error \geq 0.5

y := y + 1

error := error - 1.0
```

New integer version:

```
function line(x0, x1, y0, y1)
   int deltax := abs(x1 - x0)
   int deltay := abs(y1 - y0)
  real error := 0
   real deltaerr := deltay
                                      Multiply by deltax
   int y := y0
   for x from x0 to x1
      plot(x,y)
      error := error + deltaerr
                           Multiply by 2 deltax
      if 2*error > deltax
         y := y + 1
                                            Multiply by deltax
         error := error - deltax
                                            Ulf Assarsson © 2006
```

Complete Bresenham's line drawing algorithm

```
function line(x0, x1, y0, y1)
   boolean steep := abs(y1 - y0) > abs(x1 - x0)
   if steep then
      swap(x0, y0)
                                Swap loop axis
      swap(x1, y1)
   if x0 > x1 then
                               Swap start and end
      swap(x0, x1)
                               points
      swap(y0, y1)
   int deltax := x1 - x0
   int deltay := abs(y1 - y0)
   int error := 0
   int ystep
   int y := y0
   if y0 < y1 then ystep := 1 else ystep := -1
   for x from x0 to x1
      if steep then plot(y,x) else plot(x,y)
      error := error + deltay
      if 2 \times error \ge deltax
         y := y + ystep
         error := error - deltax
```

The first case is allowing us to draw lines that still slope downwards, but head in the opposite direction. I.e., swapping the initial points if x0 > x1.

To draw lines that go up, we check if y0 >= y1; if so, we step y by -1 instead of 1.

To be able to draw lines with a slope less than one, we take advantage of the fact that a steep line can be reflected across the line y=x to obtain a line with a small slope. The effect is to switch the x and y variables.

You need to know

- How to create a simple Scaling matrix, rotation matrix, translation matrix and orthogonal projection matrix
- Change of frames (creating model-to-view matrix)
- Understand how quaternions are used
- Understanding of Euler transforms
- DDA line drawing algorithm
- Understand what is good with Bresenhams line drawing algorithm, i.e., uses only integers.

The following slides are simply extra noncompulsory material that explains the content of the lecture in a different way.

Most of the following slides are from

Ed Angel

Professor of Computer Science, Electrical and Computer Engineering, and Media Arts

University of New Mexico

Scalars

- Need three basic elements in geometry
 - -Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

Vector Operations

- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types. Every vector can be multiplied by a scalar.
- There is a zero vector
 - -Zero magnitude, undefined orientation
- The sum of any two vectors is a vector

Vectors Lack Position

- These vectors are identical
 - -Same length and magnitude

- Vectors insufficient for geometry
 - -Need points

Points

- Location in space
- Operations allowed between points and vectors
 - -Point-point subtraction yields a vector
 - -Equivalent to point-vector addition

Affine Spaces

- Point + a vector space
- Operations
 - -Vector-vector addition
 - -Scalar-vector multiplication
 - -Point-vector addition
 - -Scalar-scalar operations
- For any point define
 - $-1 \bullet P = P$
 - $-0 \cdot P = 0$ (zero vector)

Lines

Consider all points of the form

$$-P(\alpha)=P_0+\alpha d$$

-Set of all points that pass through P_0 in the direction of the vector \mathbf{d}

Parametric Form

- This form is known as the parametric form of the line
 - -More robust and general than other forms
 - -Extends to curves and surfaces
- Two-dimensional forms
 - -Explicit: y = kx + m
 - -Implicit: ax + by + c = 0
 - -Parametric:

$$x(\alpha) = \alpha x_0 + (1-\alpha)x_1$$

$$y(\alpha) = \alpha y_0 + (1-\alpha)y_1$$

Rays and Line Segments

• If $\alpha >= 0$, then $P(\alpha)$ is the *ray* leaving P_0 in the direction **d**

If we use two points to define v, then

$$P(\alpha) = Q + \alpha (R-Q) = Q + \alpha v$$
$$= \alpha R + (1-\alpha)Q$$

For $0 \le \alpha \le 1$ we get all the points on the *line segment* joining R and Q

Planes

• A plane can be defined by a point and two vectors or by three points

$$P(\alpha,\beta)=R+\alpha u+\beta v$$

$$P(\alpha,\beta)=R+\alpha(Q-R)+\beta(P-Q)$$

Triangles

for $0 \le \alpha, \beta \le 1$, we get all points in triangle

Normals

- Every plane has a vector n normal (perpendicular, orthogonal) to it
- From point/vector form

$$-P(\alpha,\beta)=R+\alpha u+\beta v$$

we know we can use the cross product to find

$$-n = u \times v$$

• Plane equation:

$$-\mathbf{n}\cdot\mathbf{x}-\mathbf{d}=0$$
,

- where $d = -n \cdot p$ and p is any point in the plane

Normal for Triangle

plane
$$\mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = 0$$

$$\mathbf{n} = (\mathbf{p}_2 - \mathbf{p}_0) \times (\mathbf{p}_1 - \mathbf{p}_0)$$

$$\mathbf{p}$$
normalize $\mathbf{n} \leftarrow \mathbf{n}/|\mathbf{n}|$

Note that right-hand rule determines outward face

Convexity

• An object is *convex* iff for any two points in the object all points on the line segment between these points are also in the object

Affine Sums

• Consider the "sum"

$$P=\alpha_1P_1+\alpha_2P_2+\ldots+\alpha_nP_n$$

Can show by induction that this sum makes sense iff

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$$

in which case we have the *affine sum* of the points $P_1, P_2, \dots P_n$

• If, in addition, $\alpha_i \ge 0$, we have the *convex* hull of P_1, P_2, \dots, P_n

Convex Hull

Consider the linear combination

$$P=\alpha_1P_1+\alpha_2P_2+\ldots+\alpha_nP_n$$

- If $\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$
 - (in which case we have the *affine sum* of the points P_1, P_2, P_n) and if $\alpha_i \ge 0$, we have the *convex hull* of P_1, P_2, P_n
- Smallest convex object containing P_1, P_2, \dots, P_n

Frames

- A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the *origin*, to the basis vectors to form a *frame*

Representing one basis in terms of another

Each of the basis vectors, u1,u2, u3, are vectors that can be represented in terms u_2 v_2

$$u_1 = \gamma_{11}v_1 + \gamma_{12}v_2 + \gamma_{13}v_3$$

$$u_2 = \gamma_{21}v_1 + \gamma_{22}v_2 + \gamma_{23}v_3$$

$$u_3 = \gamma_{31}v_1 + \gamma_{32}v_2 + \gamma_{33}v_3$$

Matrix Form

The coefficients define a 3 x 3 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix}$$

and the bases can be related by

$$a=M^Tb$$

Translation

• Move (translate, displace) a point to a new location P'

- -Three degrees of freedom
- -P'=P+d

How many ways?

Although we can move a point to a new location in infinite ways, when we move many points there is usually only one way

translation: every point displaced by same vector

Translation Using Representations

Using the homogeneous coordinate representation in some frame

$$\mathbf{p} = [x y z 1]^{T}$$
 $\mathbf{p}' = [x' y' z' 1]^{T}$
 $\mathbf{d} = [dx dy dz 0]^{T}$

Hence
$$\mathbf{p'} = \mathbf{p} + \mathbf{d}$$
 or

$$x'=x+d_x$$

$$z'=z+d_z$$

note that this expression is in four dimensions and expresses point = vector + point

Translation Matrix

We can also express translation using a

4 x 4 matrix **T** in homogeneous coordinates

$$\mathbf{p'=Tp} \text{ where } \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T} = \mathbf{T}(d_x, d_y, d_z) = \begin{bmatrix} 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional point [x y z] is given as

$$\mathbf{p} = [\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}]^T = [\mathbf{w} \mathbf{x} \mathbf{w} \mathbf{y} \mathbf{w} \mathbf{z} \mathbf{w}]^T$$

We return to a three dimensional point (for $w\neq 0$) by

$$x \leftarrow x'/w$$

If w=0, the representation is that of a vector

Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions

For w=1, the representation of a point is [x y z 1]

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - -All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - -Hardware pipeline works with 4 dimensional representations
 - -For orthographic viewing, we can maintain w=0 for vectors and w=1 for points
 - -For perspective we need a *perspective division*

Rotation about the z axis

- Rotation about z axis in three dimensions leaves all points with the same z
 - -Equivalent to rotation in two dimensions in planes of constant z

$$x'=x \cos \theta -y \sin \theta$$

 $y'=x \sin \theta +y \cos \theta$
 $z'=z$

-or in homogeneous coordinates

$$\mathbf{p'} = \mathbf{R}_{\mathbf{Z}}(\theta)\mathbf{p}$$

Rotation Matrix

$$\mathbf{R} = \mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about x and y axes

- Same argument as for rotation about z axis
 - -For rotation about x axis, x is unchanged
 - −For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

Expand or contract along each axis (fixed point of origin)

$$\mathbf{x'} = \mathbf{s}_{x} \mathbf{x}$$

$$\mathbf{y'} = \mathbf{s}_{y} \mathbf{x}$$

$$\mathbf{z'} = \mathbf{s}_{z} \mathbf{x}$$

$$\mathbf{p'} = \mathbf{S} \mathbf{p}$$

$$\mathbf{S} = \mathbf{S}(\mathbf{s}_{x}, \mathbf{s}_{y}, \mathbf{s}_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Reflection

corresponds to negative scale factors

Inverses

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - -Translation: $\mathbf{T}^{-1}(d_x, d_y, d_z) = \mathbf{T}(-d_x, -d_y, -d_z)$
 - -Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
 - Holds for any rotation matrix
 - Note that since $cos(-\theta) = cos(\theta)$ and $sin(-\theta) = -sin(\theta)$

$$\mathbf{R}^{-1}(\mathbf{\theta}) = \mathbf{R}^{\mathrm{T}}(\mathbf{\theta})$$

-Scaling:
$$S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$$

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a matrix
 M=ABCD is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent $\mathbf{p'} = \mathbf{ABCp} = \mathbf{A(B(Cp))}$
- Note many references use column matrices to represent points. In terms of column matrices

$$\mathbf{p}^{\mathsf{T}} = \mathbf{p}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$$

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$\mathbf{R}(\theta) = \mathbf{R}_{z}(\theta_{z}) \mathbf{R}_{y}(\theta_{y}) \mathbf{R}_{x}(\theta_{x})$$

 $\theta_x \, \theta_y \, \theta_z$ are called the Euler angles

Note that rotations do not commute We can use rotations in another order but with different angles

Rotation About a Fixed Point other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_{\mathrm{f}}) \mathbf{R}(\mathbf{\theta}) \mathbf{T}(-\mathbf{p}_{\mathrm{f}})$$

Instancing

• In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size

• We apply an instance transformation to its

vertices to

Scale

Orient

Locate

Shear

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along x axis

$$x' = x + y \cot \theta$$

 $y' = y$
 $z' = z$

$$\mathbf{H}(\theta) = \begin{bmatrix} 1 & \cot \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Computer Viewing

Ed Angel

Professor of Computer Science, Electrical and Computer Engineering, and Media Arts

University of New Mexico

Objectives

• Introduce the mathematics of projection

Computer Viewing

- There are three aspects of the viewing process, all of which are implemented in the pipeline,
 - -Positioning the camera
 - Setting the model-view matrix
 - -Selecting a lens
 - Setting the projection matrix
 - -Clipping
 - Setting the view volume
 - (default is unit cube, R³, [-1,1])

Default Projection

Default projection is orthogonal

Moving the Camera Frame

- If we want to visualize object with both positive and negative z values we can either
 - -Move the camera in the positive z direction
 - Translate the camera frame
 - –Move the objects in the negative z direction
 - Translate the world frame
- Both of these views are equivalent and are determined by the model-view matrix

Moving the Camera

• We can move the camera to any desired position by a sequence of rotations and translations

- Example: side view
 - -Rotate the camera
 - -Move it away from origin
 - -Model-view matrix C = TR

OpenGL Orthogonal Viewing

near and far measured from camera

OpenGL Perspective

Using Field of View

• Parameters fovy, aspect, near, far often provides a better interface

Projections explained differently

- Read the following slides about orthogonal and perspective projections by your selves
- They present the same thing, but explained differently

Projections and Normalization

- The default projection in the eye (camera) frame is orthogonal
- For points within the default view volume

$$x_p = x$$
$$y_p = y$$
$$z_p = 0$$

- Most graphics systems use view normalization
 - -All other views are converted to the default view by transformations that determine the projection matrix
 - -Allows use of the same pipeline for all views

Homogeneous Coordinate Representation

default orthographic projection

$$\begin{aligned} \mathbf{x}_p &= \mathbf{x} \\ \mathbf{y}_p &= \mathbf{y} \\ \mathbf{z}_p &= 0 \\ \mathbf{w}_p &= 1 \end{aligned} \qquad \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

In practice, we can let M = I and set the z term to zero later

Simple Perspective

- Center of projection at the origin
- Projection plane z = d, d < 0

Perspective Equations

Consider top and side views

$$x_{\rm p} = \frac{x}{7/d}$$
 $y_{\rm p} = \frac{y}{7/d}$ $z_{\rm p} = c$

Homogeneous Coordinate Form

consider
$$\mathbf{q} = \mathbf{Mp}$$
 where
$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

$$\mathbf{q} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow \mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ z \end{bmatrix}$$

Perspective Division

- However $w \ne 1$, so we must divide by w to return from homogeneous coordinates
- This perspective division yields

$$x_{\rm p} = \frac{x}{z/d}$$
 $y_{\rm p} = \frac{y}{z/d}$ $z_{\rm p} = d$

the desired perspective equations

• We will consider the corresponding clipping volume with the OpenGL functions

Normalization

- Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume
- This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping

Pipeline View

Notes

- We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
 - -Both these transformations are nonsingular
 - -Default to identity matrices (orthogonal view)
- Normalization lets us clip against simple cube regardless of type of projection
- Delay final projection until end
 - -Important for hidden-surface removal to retain depth information as long as possible

Orthogonal Normalization

normalization ⇒ find transformation to convert specified clipping volume to default

Orthogonal Matrix

- Two steps
 - -Move center to origin

$$T(-(left+right)/2, -(bottom+top)/2, (near+far)/2))$$

-Scale to have sides of length 2

S(2/(left-right),2/(top-bottom),2/(near-far))

$$\mathbf{P} = \mathbf{ST} = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right - left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{near - far} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Final Projection

- Set z = 0
- Equivalent to the homogeneous coordinate transformation

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Hence, general orthogonal projection in 4D is

$$P = M_{orth}ST$$

General Shear

Shear Matrix

xy shear (z values unchanged)

$$\mathbf{H}(\theta,\phi) = \begin{bmatrix} 1 & 0 & -\cot\theta & 0 \\ 0 & 1 & -\cot\phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Projection matrix

$$\mathbf{P} = \mathbf{M}_{\text{orth}} \mathbf{H}(\theta, \phi)$$

General case: $P = M_{orth} STH(\theta, \phi)$

Effect on Clipping

• The projection matrix P = STH transforms the original clipping volume to the default clipping volume

Simple Perspective

Consider a simple perspective with the COP (=center of projection) at the origin, the near clipping plane at z = -1, and a 90 degree field of view determined by the planes

$$x = \pm z, y = \pm z$$

Perspective Matrices

Simple projection matrix in homogeneous

coordinates
$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Note that this matrix is independent of the far clipping plane

Generalization

$$\mathbf{N} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

after perspective division, the point (x, y, z, 1) goes to

$$x'' = x/z$$

$$y'' = y/z$$

$$Z'' = -(\alpha + \beta/z)$$

which projects orthogonally to the desired point regardless of α and β

Picking α and β

If we pick

$$\alpha = \frac{\text{near} + \text{far}}{\text{far} - \text{near}}$$

$$\beta = \frac{2\text{near} * \text{far}}{\text{near} - \text{far}}$$

the near plane is mapped to z=-1the far plane is mapped to z=1and the sides are mapped to $x=\pm 1, y=\pm 1$

Hence the new clipping volume is the default clipping volume

Normalization Transformation

Normalization and Hidden-Surface Removal

- Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if $z_1 > z_2$ in the original clipping volume then the for the transformed points $z_1' > z_2'$
- Thus hidden surface removal works if we first apply the normalization transformation
- However, the formula $z'' = -(\alpha + \beta/z)$ implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small

OpenGL Perspective

• Unsymmetric viewing frustum possible:

OpenGL Perspective Matrix

• The normalization by a perspective projection requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthogonal transformation

Why do we do it this way?

- Normalization allows for a single pipeline for both perspective and orthogonal viewing
- We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
- We simplify clipping